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Inequalities in urban greenness and epigenetic aging:
Different associations by race and neighborhood
socioeconomic status
Kyeezu Kim1, Brian T. Joyce1, Drew R. Nannini1, Yinan Zheng1, Penny Gordon-Larsen2,
James M. Shikany3, Donald M. Lloyd-Jones1, Ming Hu4, Mark J. Nieuwenhuijsen5,6,7,
Douglas E. Vaughan8,9, Kai Zhang10*, Lifang Hou1,9*

Slower epigenetic aging is associated with exposure to green space (greenness); however, the longitudinal re-
lationship has not been well studied, particularly in minority groups. We investigated the association between
20-year exposure to greenness [Normalized Difference Vegetation Index (NDVI)] and epigenetic aging in a large,
biracial (Black/white), U.S. urban cohort. Using generalized estimating equations adjusted for individual and
neighborhood socioeconomic characteristics, greater greenness was associated with slower epigenetic aging.
Black participants had less surrounding greenness and an attenuated association between greenness and epi-
genetic aging [βNDVI5km: −0.80, 95% confidence interval (CI): −4.75, 3.13 versus βNDVI5km: −3.03, 95% CI: −5.63,
−0.43 in white participants]. Participants in disadvantaged neighborhoods showed a stronger association
between greenness and epigenetic aging (βNDVI5km: −3.36, 95% CI: −6.65, −0.08 versus βNDVI5km: −1.57, 95%
CI: −4.12, 0.96 in less disadvantaged). In conclusion, we found a relationship between greenness and slower
epigenetic aging, and different associations by social determinants of health such as race and neighborhood
socioeconomic status.

Copyright © 2023

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

original U.S. Government

Works. Distributed

under a Creative

Commons Attribution

License 4.0 (CC BY).

INTRODUCTION
More than half of the world’s population now lives in urban areas,
and it is projected that around 68% will live in urban areas by 2050
(1). Urban green space (greenness) including parks, green roofs,
and community gardens provides critical ecosystem services, and
their potential benefits to healthy aging (including better cardiovas-
cular health and lower mortality) were documented in the literature
(2–5). Although potential pathways, including physical activity and
social network and interaction, have been suggested to partially
explain how surrounding greenness might affect health outcomes
(6–8), the underlying molecular biological mechanisms of these as-
sociations remain unclear.
One possible mechanism is epigenetic modifications, such as ab-

errant DNA methylation levels, which are associated with both en-
vironmental exposures and health conditions. Accumulated
exposures to environmental factors can stimulate DNA hyper- or
hypomethylation over time to affect human health (9, 10). Epige-
nome-wide association studies have identified residential green-
ness-associated differently methylated regions that showed

enrichments in physical activity– and allostatic load–related bio-
markers, mental health, metabolic disease, and neoplasms (11,
12). A summary biomarker, DNA methylation–based biological
age (epigenetic age), has been proposed as a predictive marker of
age-related health outcomes. This is supported by multiple previous
studies of epigenetic age that observed associations with cardiovas-
cular disease (CVD), cancer, and mortality (13–15) as well as
various health-related lifestyle and exposure variables (16). Expo-
sure to greenness has been rarely linked with epigenetic age
except for one cross-sectional study (17). Furthermore, no studies
have examined the role of race and sex in the association between
greenness and epigenetic age that are important to understand and
reduce disparities in greenness exposure and its benefits (18, 19).
Here, we conducted the first longitudinal study to examine the as-
sociations between long-term greenness exposures and epigenetic
age and then evaluate race and sex differences as well as effect mod-
ification by neighborhood deprivation.

RESULTS
Characteristics of study participants
Table 1 shows the characteristics of study participants at Year 20
(Y20) (2005–2006). Among 924 participants (mean age = 45.3
years, SD = 3.5 years) consisting of 376 Black and 548 white partic-
ipants, 453 were men and 471 were women. Five hundred and four
(54.5%) participants had parks within 5 km of their residential
address. The mean Normalized Difference Vegetation Index
(NDVI) value within a 5-km buffer radius 1 year before the Y20
visit was 0.38 (SD = 0.11). We observed that participants having
parks within 5 km had lower NDVI value (mean: 0.35, SD: 0.09
for participants with parks; mean: 0.41, SD: 0.12 for those
without parks, respectively). The correlations of epigenetic age
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acceleration (EAA)measurements were moderate, ranged from 0.33
to 0.60 (table S1).
The distributions of having parks and NDVI values by sub-

groups are presented in Table 2. In general, Black participants
were likely to have less surrounding greenness compared to white
participants (having parks within 5 km: 49.2% for Black participants
and 58.4% for white participants, P value: 0.005; mean NDVI5km:
0.36 for Black participants and 0.38 for white participants, P
value: 0.007, respectively). The participants with higher neighbor-
hood deprivation scores tended to have less greenness compared to

those with lower scores (having parks within 5 km: 65.7% for below
median and 40.3% for above median, P value <0.001). The distribu-
tions of having parks and NDVI values by field center are presented
in table S2.

Twenty-year exposure to greenness and epigenetic aging
In Coronary Artery Risk Development in Young Adults (CARDIA)
participants, having parks and greater exposure to residential-sur-
rounding greenness from Y0 through Y20 (1985–2006) were asso-
ciated with slower GrimAge acceleration (GrimAA) in the
minimally adjusted model with attenuated results in models con-
trolling for individual factors and particularly neighborhood socio-
economic status (SES) (Fig. 1). Compared to having no parks within
5 km of one’s residential address, having parks was associated with
slower GrimAA of on average 0.47 to 0.93 years [β: −0.93, 95% CI:
−1.47, −0.41 (model 1) to β: −0.47, 95% CI: −0.91, −0.02 (model
3)]. Measured 1 year before exam, each 0.1-unit higher NDVI5km
was associated with lower GrimAA of on average 2.07 to 3.41
years [β: −3.41, 95% CI: −6.02, −0.80) (model 1) to β: −2.07,
95% CI: −4.28, 0.13 (model 3)]. We observed similar patterns
with NDVI5km measured at different time points (2 and 3 years
before exam), but the associations with NDVI measured 2 and 3
years before exam were generally even stronger than those for
NDVI measured 1 year before exam. The longitudinal associations
between surrounding greenness and GrimAA at Y15 were qualita-
tively similar to the results with GrimAA at Y20 (fig. S1).
Figure 2 displays the time-specific association between residen-

tial greenness at each exam (Y0, Y7, Y10, Y15, and Y20) and
GrimAA at Y20. Similar to the results from the associations with
long-term exposure (Fig. 1), higher exposure to greenness was asso-
ciated with slower GrimAA. We observed qualitatively consistent
associations between greenness exposure at different time points
and slower GrimAA in midlife, the strongest associations being
those with greenness at Y20.

Racial and SES disparities in greenness-epigenetic aging
associations
Figure 3 represents the results from our subgroup analyses. A mar-
ginal association between parks and GrimAA was observed among
Black participants [β: −0.78, (95% CI: −1.58, 0.01)]. We observed
associations of the NDVI5km (1 year before exam) with GrimAA
among white participants, showing on average 3.03 years slower
GrimAA per 0.1 increment of NDVI [β: −3.03 (95% CI: −5.63,
−0.43)] per 0.1 increment of NDVI. The magnitude of association
was lesser among Black participants, showing 0.80 years slower
GrimAA per 0.1 increment of NDVI [β: −0.80 (95% CI: −4.75,
3.13)]. We found associations of NDVI5km (1 year before exam)
with GrimAA among women [β: −3.31 (95% CI: −6.25, −0.38)]
but not in men [β: −0.83 (95% CI: −4.17, 2.52)]. The associations
between having parks and GrimAA were stronger among partici-
pants with lower deprivation scores showing, on average, 0.88
years slower GrimAA [β: −0.88 (95% CI: −1.49, 0.27)] among par-
ticipants with lower scores and 0.07 years slower GrimAA [β: −0.07
(95% CI: −0.69, 0.11)] among participants with higher scores.
Conversely, the association of NDVI5km (1 year after exam) was

stronger among participants with higher deprivation scores,
showing, on average, 3.36 years slower GrimAA [β: −3.36 (95%
CI: −6.65, −0.08)] among participants with higher scores and

Table 1. Participants’ demographic characteristics at Coronary Artery
Risk Development in Young Adults Exam Year 20 (2005–2006; N =
924). The NDVI values in the table represent the maximum values of NDVI
measured 1-, 2-, and 3-year(s) pre-exam at Y20 (2005–2006).

Characteristic

Age, mean (SD*) 45.3 (3.5)

Sex, N (%) Men 453 (49.0)

Women 471 (51.0)

Self-reported race, N (%) Black participants 376 (40.7)

White participants 548 (59.3)

Years of education, mean (SD) 15.1 (2.5)

Marital status, N (%) Married 536 (58.0)

Not married 388 (42.0)

Annual household income, N (%) Less than $35,000 191 (20.7)

$35,000–$74,999 270 (29.2)

Greater than
$75 000

463 (50.1)

Body mass index, mean (SD) 29.2 (6.4)

Physical activity (total intensity
scores), mean (SD)

346.0
(274.4)

Smoking status, N (%) Never 555 (60.1)

Former 191 (20.7)

Current 178 (19.3)

Neighborhood deprivation score,
median (IQR†)

−0.47
(1.43)

Distance to the nearest major park
(km), mean (SD)

6.94 (7.64)

Having parks within 5 km, N (%) Yes 505 (54.6)

No 419 (45.4)

NDVI‡ 5-km buffer (1 year before
exam), mean (SD)

0.38 (0.11)

NDVI 5-km buffer (2 years before
exam), mean (SD)

0.38 (0.11)

NDVI 5-km buffer (3 years before
exam), mean (SD)

0.37 (0.11)

Study field center, N (%) Birmingham, AL 216 (23.4)

Chicago, IL 199 (21.5)

Minneapolis, MN 251 (27.2)

Oakland, CA 258 (27.9)

*SD, standard deviation. †IQR, interquartile range. ‡NDVI,
Normalized Difference Vegetation Index.
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1.57 years slower GrimAA [β: −1.57 (95% CI: −4.12, 0.96)] among
participants with lower scores per 0.1 increment of NDVI.
Among the individual components of GrimAA, longitudinal

measures of NDVI 5-km buffer measured 3 years before the exam
were inversely associated with DNAmethylation surrogates for cys-
tatin-C [β: −0.71 (95% CI: −1.39, −0.02)] and smoking pack-years
[β: −0.57 (95% CI: −1.05, −0.08)]. We found no associations
between the other components of GrimAA and residential sur-
rounding greenness (fig. S2).
The associations between residential greenness and PhenoAge

acceleration (PhenoAA) were qualitatively similar to the results
with GrimAA but generally attenuated (tables S3 and S4). We did
not observe any associations with DunedinPACE (tables S5 and S6).

Results from sensitivity analyses
The results from our sensitivity analysis of the cross-sectional asso-
ciations between various NDVI radial buffer sizes and GrimAA
(table S7) were consistent with those from themain analysis for lon-
gitudinal associations, as expected as we observed high correlations
among the various NDVI measures (R2 ranged from 0.89 to 0.99).
The results from principal component (PC)-based GrimAA and
PhenoAA (table S8) were almost identical to those from GrimAA
and PhenoAA. The models with cumulative smoking and leukocyte
compositions also showed generally consistent results with our
main models (tables S9).

DISCUSSION
To our knowledge, this is the first study to assess the associations
between long-term exposure to surrounding greenness and epige-
netic aging in a population-based cohort and how race and sex
modify these associations. Longitudinally, having greater surround-
ing greenness was associated with slower epigenetic aging. The pro-
tective association of greenness with slower epigenetic aging was

generally consistent across the study time points, suggesting that cu-
mulative exposures to greenness may play a role in slower epigenetic
aging later in life. In our data, Black participants tended to have less
surrounding green space compared to the white participants, and
beneficial association of greenness with epigenetic aging was only
found among white participants. Our sex-stratified analyses exhib-
ited protective associations of greenness in women but not in men.
Greater exposure to greenness showed stronger associations among
participants with higher neighborhood deprivation scores (i.e.,
more disadvantaged neighborhoods). We found most notable asso-
ciations with GrimAA, and associations with PhenoAA were qual-
itatively similar to GrimAA results. We did not observe any
associations with DunedinPACE. While much additional research
remains to be done, in particular to identify explanatory factors
and fully elucidate the relationship between SES and other social
determinants of health, our findings provide a critical basis for po-
tential biological mechanisms between greenness and improved
health outcomes.
The protective association of greater exposure to greenness and

slower epigenetic aging shown in our results is in line with prior
evidence associating greenness exposure with improvements in
health-related outcomes (2–5, 17). In addition to the existing liter-
ature showing cross-sectional associations, we found that prolonged
exposure to surrounding greenness from younger age was associat-
ed with slower epigenetic aging in midlife. Our observations were
also supported by our time-specific analysis that displayed protec-
tive associations of greenness with slower GrimAA at Y20 consis-
tently across the exam years. While the associations using prior-
year greenness were qualitatively similar, the associations in more
recent exam years were stronger. Coupled with our generalized es-
timating equation (GEE) models that showed less impact of green-
ness on GrimAA at Y15 than Y20, this could also imply that
exposure to greenness could play an increasingly important role
as people get older. Furthermore, the stronger associations using
NDVI measured 2 and 3 years before exam compared to NDVI 1-
year before exam in our results may suggest potential lag effects of
surrounding greenness on changes in DNA methylation levels (i.e.,
years of exposure to greenness required for epigenetic effects).
Future research is needed to more comprehensively identify the
acting time frame, such as potential lag effects, in association with
greenness exposure and DNA methylation. If confirmed, it could
also emphasize the need for prompt intervention for the expansion
of greenness in the urban area to promote slower epigenetic aging
that can lead to better health outcomes in midlife.
Our subgroup analyses suggest that the expansion of greenness

may be more important to the population with limited resources.
We observed a weaker protective association of surrounding green-
ness with GrimAA among Black compared to white participants. In
our data, Black participants had lesser surrounding greenness than
white participants, suggesting that Black participants might have
fewer opportunities for access to greenness that could result in
less improvement in epigenetic aging. Together, our findings have
implications that targeted urban strategies for greenness expansion
may aid in improving environmental justice and health equity to
overcome racial disparities in health. We also observed that
women exhibited slower GrimAA with higher NDVI values, sup-
porting prior evidence that showed a higher association of green-
ness with health among women (20). One explanation is that
traditional social roles as a caregiver might increase the use of

Table 2. Distribution of greenness variables (2005–2006; Y20) by race,
sex, and neighborhood subgroups.

Having parks
within 5 km,
yes; N (%)

*P
value

NDVI 5-km
buffer;

mean (SD)

*P
value

By race

Black
participants

185 (49.2)

0.005

0.36 (0.10)

0.007
White
participants

320 (58.4) 0.38 (0.12)

By sex

Men 246 (54.3)
0.834

0.38 (0.11)
0.358

Women 259 (55.0) 0.37 (0.11)

By neighborhood deprivation scores

Below
median

343 (65.7)

<0.001

0.38 (0.11)

0.180
Above
median

162 (40.3) 0.37 (0.12)

*P values for having parks and NDVI were derived from the chi-squared
tests and Student’s t tests, respectively.
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residential surrounding greenness (20, 21). Another explanation is
that the beneficial effects of surrounding greenness on health may
be linked to the purpose of green space use, such as social networks
and social support. Research indicates that the use of green space
differs by sex; for example, women can visit parks more often po-
tentially for social interaction and cohesion or as part of caring for
children (20, 22, 23). In our study, residential surrounding green-
ness might serve as a place of restoration for social support and con-
tribute to better health, as represented by slower epigenetic aging.
In our study, higher NDVI was associated with slower GrimAA

among participants with higher deprivation scores. Our results with
NDVI are in line with the studies that found stronger associations
for greenness among participants with lower SES (24, 25). Limited
resources for leisure time activities have been suggested to explain
the stronger associations of surrounding greenness among individ-
uals with low SES, as it might increase the opportunity to be exposed
to residential surrounding greenness (19). A study also showed that
higher surrounding greenness area was associated with decreased
stress levels in deprived neighborhoods (26). On the other hand,
having parks within 5 km of one’s residential address was associated
with slower GrimAA among participants with lower deprivation
scores. The estimated protective effects of parks on GrimAA
among less deprived participants in our study may be due to the
different perceptions of park use between neighborhoods. It is

possible that urban parks may be used for illicit activities (27, 28),
especially parks with low resources (27); the resulting crime and
safety concerns may thus result in reduced park use by residents
in low-income urban neighborhoods (29). Coupled with the
lower NDVI among participants with parks within 5 km compared
to those without in our data, the discrepancies between parks and
NDVI by neighborhood SES suggest a need for future research that
elucidates the role of other factors (such as actual use of parks, phys-
ical activity, and neighborhood characteristics) that may mediate
the associations of parks and NDVI with epigenetic aging. Never-
theless, our results suggest that expansion of urban greenness with
improved quality could contribute to slower epigenetic aging that
may lead to better health outcomes, especially for people living in
disadvantaged neighborhoods.
Long-term exposure to greenness was associated with two indi-

vidual components of GrimAA (DNA surrogate cystatin-C and
smoking pack-years) in our analyses, suggesting that exposure to
greenness may modulate the epigenetic aging process via molecular
processes. Elevated cystatin-C concentration is a useful clinical
marker for poor kidney functions (30, 31). Greenness-related
factors, such as physical activity and air pollution, may play a role
in the association between greenness and cystatin-C. Evidence sug-
gests that physical activity is associated with lower concentrations of
serum cystatin-C (32). Greenness is also known to have beneficial

Fig. 1. Association between long-term exposure to surrounding greenness (1985–2006; Y0-Y20) and GrimAA (2005–2006; Y20). Model 1: adjusted for age, sex,
race, and study field center; model 2: adjusted for model 1 covariates + individual behavior and SES [education years, smoking, marital status, income, physical activity,
and body mass index (BMI)]; model 3: adjusted for model 2 covariates + neighborhood deprivation score.
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effects by mitigating the effects of air pollution (33), which, in the
case of kidney function, include elevated cystatin-C concentrations
(34, 35). Meanwhile, smoking is an established risk factor for CVD
and cancer, and research showed that DNA surrogate biomarkers of
smoking were associated with EAA (36). Moreover, results from
multiple studies imply inverse associations between neighborhood
greenness and smoking (37, 38). Some research suggests that living
in areas with higher greenness may be associated with lower
smoking uptake and higher smoking cessation (37, 39). The under-
lying mechanisms between exposure to greenness and health are
complex, and further study is needed to expand our understanding
in this area. We believe that our results can contribute to the direc-
tion of the future study to incorporate molecular level changes, such
as DNAmethylation, to explore the acting mechanism of greenness
exposure for health outcomes.
Our study showed qualitatively similar results between GrimAA

and PhenoAA, suggesting protective associations of greenness ex-
posure with slower epigenetic aging. However, we did not find as-
sociations with DunedinPACE. The differences in effect size
between GrimAA and PhenoAA have been described in our previ-
ous study that showed associations of cumulative, collective life-
style- and health-related exposures with epigenetic aging (16).
Prior evidence has also proposed that different EAAs are linked
to distinct physiological characteristics (40, 41), and one study sug-
gested GrimAA that has better prediction than PhenoAA of age-
related physiologic characteristics and mortality (41). Recent
studies comparing GrimAA and DunedinPACE observed different
associations of both EAAmeasures with distinct health outcomes. A
study showed associations of mortality with GrimAA but not with
DunedinPACE (42). Another study found that cognitive decline was

associated with DunedinPACE but not with GrimAA (43). The dis-
crepancies in EAA associations with exposures and/or outcomes
may be due to differences in the three EAA measurements’ compo-
nent CpGs (44–46). The different CpG sets of these three EAAsmay
have different sensitivities to external stimuli (e.g., exposure to
greenness) and lead to distinct associations with varying physiolog-
ical characteristics by EAA measures as shown in other studies. As-
sessing the relationships across different types of exposures, EAA
measurements, and health consequences should be one direction
of future studies.
Our study is not without limitations. The measurements of sur-

rounding greenness adopted in this study did not incorporate the
quality of greenness or type of green spaces. More detailed green-
ness data may further elucidate the association between surround-
ing greenness and epigenetic aging. We also cannot rule out the
possibility of residual confounding from factors not measured in
this study, such as stress and social network. In addition, we did
not address residential selectivity bias or other sources of bias
related to the selection of residential locations on the basis of ame-
nities like parks. Nor did we address biases related to the residential
sorting of individuals of lower income into disadvantaged neigh-
borhoods with lower access to parks. The observed attenuation of
results in models adjusting for individual factors and neighborhood
SES suggests that this may indeed be the case. We did not conduct a
sensitivity analysis with and without movers; however, this cohort
was launched in 1985, and only 7% of participants have stayed in
their baseline addresses as of 2005–2006 (47). Furthermore, individ-
uals’ social capital, including social networks and support, might
play a role as a mediator in the association of greenness exposure
and epigenetic aging by providing open space for social networking

Fig. 2. Time-specific associations between residential greenness at each exam visit and GrimAA at Y20 (2005–2006).Model 1: adjusted for age, sex, race, and field
center; model 2: adjusted for model 1 covariates + individual behavior and SES (education years, smoking, marital status, income, physical activity, and BMI); model 3:
adjusted for model 2 covariates + neighborhood deprivation score.
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that may contribute to better health conditions (48, 49). In sum,
comprising quality and type of surrounding greenness as well as
identifying the role of social capital and other potential mediators
should be a direction of future studies to expand the understanding
of the association between greenness and epigenetic aging. Last, ad-
ditional studies in more cohorts with diverse populations across
multiple areas will allow for better generalizability of the findings
presented here.
In conclusion, the empirical findings from this study can provide

scientific evidence to improve the exposure to greenness at a neigh-
borhood level to modulate the epigenetic aging process by provid-
ing critical insights into the biological mechanisms between
greenness and epigenetic aging. Our findings have strong implica-
tions for coupling public health intervention and urban planning to
expand green infrastructure and maximize its utilization that may
be associated with improved life span. The subgroup-specific

associations presented in this study also contribute to the literature
needed to support policy-level efforts to advance equity in green
space in association with its health benefit. Future research explor-
ing pathways with other explanatory factors including residential
selection, individual park-use behavior, and neighborhood SES is
needed for a more comprehensive understanding of greenness
and epigenetic aging.

MATERIALS AND METHODS
Cohort description
Participants from the CARDIA Study were included in this investi-
gation. CARDIA is a prospective cohort study that recruited partic-
ipants between 1985 and 1986 (study baseline; Y0) from four urban
field centers across the United States: Birmingham, AL; Chicago, IL;
Minneapolis, MN; and Oakland, CA. A total of 5115 men and

Fig. 3. Association between long-term exposure to surrounding greenness (1985–2006; Y0-Y20) and GrimAA (2005–2006; Y20) by subgroups. Models were
adjusted for age, sex, race, education years, smoking, marital status, income, physical activity, BMI, neighborhood deprivation score, and field center.
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women (aged 18 to 30 years) consisting of Black and white individ-
uals were recruited at baseline and received follow-up examinations
at Y2 (1987–1988), Y5 (1990–1991), Y7 (1992–1993), Y10 (1995–
1996), Y15 (2000–2001), Y20 (2005–2006), Y25 (2010–2011), Y30
(2015–2016), and Y35 (2021–2022). Further details of the
CARDIA study are described elsewhere (50). Each CARDIA field
center and the coordinating center received institutional review
board approval from their respective institution, and all participants
provided written informed consent at each exam.
The analytic cohort of this study comprised participants who re-

turned for Y15 and Y20 exams, as DNA methylation profiling was
conducted at these two exam points. Of 3672 and 3549 CARDIA
participants who returned for Y15 and Y20 exams, respectively,
we included 924 participants with complete information on DNA
methylation levels, residential surrounding greenness, and other co-
variates at Y20.

Estimation of residential surrounding greenness
In CARDIA, geocoding of participants’ residential addresses was
performed at Y0, Y7, Y10, Y15, Y20, and Y25. On the basis of the
geocodes, participants’ exposure to residential surrounding green-
ness was obtained through two measures: park exposure and sur-
rounding greenness exposure from satellite-based estimation.
Park exposure (having parks within 5 km): The residential

history was matched to the information on public parks based on
the component of StreetMap Pro (version 5.2.) from the Environ-
mental Systems Research Institute. The distance to the park was
measured as a Euclidean distance (kilometers) to the major park
nearest to each participant’s residential location. As a scatterplot
between continuous measurement of the distance to the park and
EAA did not display obvious trends (fig. S3), we derived a dichot-
omous variable using a threshold of 5 km (i.e., having parks within 5
km from participants’ residential address versus not) to be consis-
tent with our main measurement of interest in NDVI analysis.
Surrounding greenness exposure (NDVI 5-km buffer): Sur-

rounding greenness was estimated using the satellite-derived
NDVI, which indicates the land surface’s overall greenness but
not the greenness type (e.g., fields, forests and parks). We obtained
NDVI data from the Global Inventory Modelling and Mapping
Studies for Y0, Y7, and Y10 (before 2000) and Moderate Resolution
Imaging Spectroradiometer for Y15 and Y20 (during 2000–2015).
All NDVI data were downloaded from Earthdata Search of NASA
(https://search.earthdata.nasa.gov/search). NDVI is calculated as a
near-infrared–to–visible red ratio and ranges from −1 to 1, and we
replaced negative values (for frozen ground, water, and nonvege-
tated soil) with zero to represent more greenness with a higher
value of NDVI as a proportion (51). For example, an NDVI value
of 0.2 with a 5-km buffer indicates that the greenness accounts for
20% of land surface within a radial distance of 5 km from a partic-
ipant’s residential address (translates to 5 × 5 × 3.14 × 0.2 = 15.7 km2
of a green space area). In CARDIA, the 5-km buffer (NDVI5km) was
available for all examination years included in this study (Y0, Y7,
Y10, Y15, and Y20), but the other buffers (NDVI250m, NDVI500m,
NDVI1km, and NDVI2km) were available only for Y20 as the high-
resolution satellite images are rarely available publicly in early days;
therefore, we used NDVI5km as our primary measure of interest in
main analyses, and other buffers at Y20 as measures in a sensitivity
analysis for comparison purposes. To minimize the seasonal

variation and examine potential lag effects, we used the
maximum values of NDVI measured 1, 2, and 3 years before
CARDIA exam visits.

DNA methylation profiling and calculation of EAA
Participants’ DNA was extracted from whole blood among 1200
randomly selected participants at Y15 and Y20, and DNA methyl-
ation levels were measured via Infinium Methylation EPIC Bead-
Chip (EPIC array). For quality control (QC) of the DNA
methylation profiles, we included only CpGs with a detection rate
greater than 95%. We used the R package ENmix (52) for QC pro-
cedures and the preprocessIllumina function in the minfi package
for post-QC preprocessing procedures (53).
We included three DNAmethylation-based epigenetic age mea-

surements in this study: GrimAge, PhenoAge, and DunedinPACE.
We calculated GrimAge and PhenoAge using Horvath’s online
DNA Methylation Age Calculator (https://dnamage.genetics.ucla.
edu) and DunedinPACE on the basis of the published algorithm
(44–46). GrimAge was developed to predict time to death using
data of 2356 individuals age in fifties to seventies from the Framing-
ham Heart Study Offspring Cohort (predominantly white race, ba-
lanced sex). GrimAge incorporated chronological age, seven DNA
surrogate biomarkers of plasma proteins (adrenomedullin, beta-2
microglobulin, cystatin C, growth differentiation factor 15, leptin,
plasminogen activation inhibitor 1, and tissue inhibitor metallopro-
teinase 1), and smoking pack-years (45), which were associated with
morbidity and mortality. PhenoAge was derived on the basis of the
individuals age over 20 from the National Health and Nutrition Ex-
amination Survey III (N = 9926) and IV (N = 6209). PhenoAge in-
corporated chronological age and nine clinical biomarkers
(albumin, creatinine, glucose, C-reactive protein, lymphocyte
percent, mean cell volume, red cell distribution width, alkaline
phosphatase, and white blood cell count) to predict “phenotypic
age” (44). GrimAA represents the deviation of GrimAge from chro-
nological age, calculated as the regression residuals of the GrimAge
on chronological age therefore the values greater than zero repre-
sent accelerated epigenetic age in unit of year. PhenoAA, which rep-
resents the deviation of PhenoAge from chronological age, was
calculated in the same way. DunedinPACE was developed on the
basis of the data of 817 individuals age at 45 from the Dunedin
Study (predominantly white race and balanced sex). DunedinPACE
incorporated the longitudinal change of 19 biomarkers associated
with clinical conditions including cardiovascular, metabolic, and
immune systems to derive the individual differences in pace of
aging which reflects age-related declines. The DunedinPACE
values represent the rate of epigenetic age compared to the
average rate in the same age group, and the values greater than 1
indicate accelerated epigenetic age (46).

Covariates
We included the following covariates in the study: self-reported sex
(men or women) and race (Black or white), years of education, body
mass index (BMI), marital status, annual household income, phys-
ical activity, smoking status, neighborhood deprivation score, and
study field center. Physical activity was measured using total inten-
sity scores based on participants’ self-reported physical activity
levels. Smoking status was classified into three groups: never,
former, and current smoker. The neighborhood deprivation score
adopted in this study was developed from a PC analysis of the four
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census tract-level indicators of SES: median household income, the
proportion of the population at or below poverty level, the propor-
tion of the population with less than high school education, and the
proportion of the population with a college degree or higher educa-
tion (54). The neighborhood deprivation score was designed to have
values between −1 and 1, with higher values representing high so-
cioeconomic disadvantage in participants’ neighborhoods. The
score was matched to the participants’ geocoded residential location
at each CARDIA exam visit.

Statistical analysis
Participants’ characteristics at Y20 were presented as mean and SD
for continuous variables [age, years of education, BMI (kg/m2),
physical activity, distance to the park, and NDVI with different
buffer sizes], median and interquartile range (IQR) for neighbor-
hood deprivation score, and count and proportion (%) for categor-
ical variables (race, sex, marital status, annual household income,
smoking status, and field center). We examined the correlations
among the EAA measurements and distributions of NDVI by
status of having parks within 5 km. We also assessed the distribu-
tions of parks and NDVI by study field center.
To assess the association between 20-year exposure to residential

surrounding greenness (independent variable) at Y0, Y7, Y10, Y15,
and Y20 and EAA (dependent variable: GrimAA, PhenoAA, and
DunedinPACE), at Y20, we adopted GEE regression models. We
conducted separate analyses of different variables representing par-
ticipants’ residential greenness: (i) having parks within 5 km, (ii)
different NDVI buffer sizes measured 1, 2, and 3 years before the
Y20 exam. In our main analysis, we used multiple models control-
ling for different sets of covariates. In model 1, we controlled for
race, sex, and study field center. In model 2, we additionally con-
trolled for individual SES and lifestyle factors (education,
smoking, marital status, household income, physical activity, and
BMI). Last, we added neighborhood SES (represented by neighbor-
hood deprivation score) in model 3. We conducted analyses using
GEE models with 15-year exposure to greenness (Y0, Y7, Y10, and
Y15) EAA at Y15 for comparison. Notably, we treated the indepen-
dent variables (greenness variables) and covariates (individual and
neighborhood SES and lifestyle factors) as time-varying variables
(Y0 to Y15 for Y15 analysis and Y0 to Y20 for Y20 analysis, respec-
tively) while the dependent variable (EAA at Y15 and Y20) was
fixed in the GEE models. As we found associations of greenness
with GrimAA from the analyses with GEE models, we further per-
formed analyses for time-specific associations with residential
greenness at each exam (Y0, Y7, Y10, Y15, and Y20), and
GrimAA at Y20 using linear regression models to investigate
whether exposure at specific time points have greater associations
with GrimAA.
We performed subgroup analyses to investigate the potential de-

viations in association of greenness with EAA by social determi-
nants of health. For subgroup analyses, we performed analyses
stratified by race, sex, and neighborhood deprivation score (dichot-
omized about the median). Race, sex, and neighborhood-specific
interactions were tested by including a product term between green-
ness variables and each potential effect modifier in the full model
with total participants. We also explored the associations between
residential greenness and Z-score transformed eight individual
DNA surrogate markers GrimAA to further investigate the poten-
tial biological mechanisms of exposure to greenness on GrimAA.

We conducted multiple sensitivity analyses to investigate the as-
sociations between residential surrounding greenness and EAA at
Y20 by subgroups and various NDVI radial buffer sizes. We as-
sessed the cross-sectional associations between residential green-
ness at Y20 and EAA at Y20 using different radial buffers:
NDVI250m, NDVI500m, NDVI1km, NDVI2km, and NDVI5km.
We investigated the associations of greenness with PCs-incorporat-
ed GrimAA and PhenoAA (PC-GrimAA and PC-PhenoAA, re-
spectively), which incorporate the PCs from the CpGs to train the
epigenetic agemeasurements, for comparison purposes (55).We as-
sessed the associations of greenness with EAA additionally adjust-
ing for cumulative smoking (smoking pack per year) and estimated
leukocyte composition. The set of covariates in the primary analysis
model 3 was used for all sensitivity analyses. We used SAS version
9.4 (SAS Institute Inc., Cary, NC) for all statistical analyses for
this study.

Supplementary Materials
This PDF file includes:
Figs. S1 to S3
Tables S1 to S9
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